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The genetic revolution ushered in comprehensive understanding of 
genes; however, proteins are the major gene products. As the effectors 
of biological products, proteins warrant increased study and attention 
and thus, a proteomic evolution has begun.

Proteins, Protein Isoforms and Protein PTMs
Proteins are the gene products and thus their effectors [1-6]. 

Proteins can be part of two or more different biological processes due 
to two main intrinsic properties: protein-protein interactions (PPIs) 
and PTMs of proteins [1,2,7-10]. Being part of a protein complex with 
inhibitory properties (towards a particular biological process, e.g. cell 
motility) makes that protein an inhibitor of that biological process 
[5,6,11-16]. However, being part of a protein complex with activatory/
stimulatory properties makes that protein an activator [7,13,17-20]. 
Therefore, depending on its interaction partners, the same protein can 
have dual or multiple functions [5,7,8,11,13,15,20]. 

Another intrinsic property that gives proteins dual and sometimes 
multiple function are PTMs [5-7,10,14,16,21]. There are many protein 
PTMs; among the most common are phosphorylation, glycosylation, 
acetylation, truncation or formation of disulfide bridges [1,5,7,20-25]. 
There are also intracellular specific protein PTMs (e.g. phosphorylation 
or acetylation) and extracellular protein PTMs (e.g. glycosylation, 
disulfide bridges, etc) [10,14, 17,23,26-29]. These protein PTMs are 
involved in a large variety of processes such as protein stability, enzymatic 
activity, signal transduction pathways, cytoskeletal remodeling, gene 
regulation or cell motility. Understanding the function of these protein 
PTMs can help in understanding physiological and pathological 
processes, which in turn can help us in understanding when, where and 
why one should take action to modify a physiological process (e.g. to 
create a virus/bacteria/pest/parasite-resistant transgenic plant), to use 
a physiological process (e.g. to produce a recombinant antibody) or to 
prevent, monitor, or even treat a pathological process (e.g. diseased or 
disorders) [18,24,30-33]. Therefore, identification of these PPIs, protein 
PTMs, their location within the protein, as well as their status (e.g. 
covalent or non-covalent interactions, stable or transient interactions, 
etc) would provide valuable information about the status and function 
of that protein [18,24,30-33].

PTM Proteomics
Proteomics is the study of proteins, protein PTMs, PPIs of the cells, 

tissues, organs or organisms (or bodily fluids) at a particular stage or 
time-point (physiological or pathological, or during development) 
[1,2,7,17,34-36]. Proteomics is performed at both qualitative (protein 
and protein PTMs identification and characterization) and quantitative 
(protein and protein PTMs quantitation) [1,2,7,17,34-36].

Identification of common protein PTMs is more or less 
straightforward and it is usually performed at both protein level (top 
down or middle down proteomics) and peptide level (part of bottom 
up proteomics) [3,4,6,10,36]. For example, phosphoproteomics 
consists at identification of the phosphorylation sites at the Serine, 
Threonine and Tyrosine residues and their subsequent characterization 
and quantification [3,4,6]. The most common approaches used for 
identification of these phosphorylation sites are enrichment at the 
protein level (anti-phosphotyrosyne antibodies and less popular anti-

phosphothreonine/serine antibodies) or peptide level (metal-based 
affinity purification such as TiO2 affinity chromatography, immobilized 
metal affinity chromatography (IMAC), or a combination of both 
[4,7,8,15]. There are also similar approaches for other protein PTMs 
such as lectins for glycoproteins or glycopeptides, anti-nitrotyrosine for 
enrichment of nitrotyrosine residues or anti-acetyl-lysine antibodies for 
enrichment of the acetylated lysine residues. At the mass spectrometry 
level, methods like multiple reaction monitoring, information 
dependent data analysis (data-dependent analysis using an inclusion 
list) or neutral loss are common methods for identification of protein 
PTMs [4-8,14,15,17,22,28]. 

Challenges
As previously briefly described, there are many options for 

identification, characterization and quantification of protein PTMs 
[4-8,14,15,17,22,28]. The challenge is not so much in the biochemical 
and proteomic characterization of the stable or common protein 
PTMs such as phosphorylation or acetylation but rather for the 
transient or uncommon protein PTMs. For example, there are 
challenges in identification of transient phosphorylations (e.g. 
during signal transduction pathways) or in identification of PTMs 
such as nitrosylation, farnesylation, glycosylation or identification 
of disulfide bridges [4-8,14,15,17,22,28]. In addition, while there 
are established methods for identification of disulfide bridges and 
determination of O-and N-linked glycosylation sites and the structure 
of the glycan structure, it is not possible to automate these methods [4-
8,14,15,17,22,28]. Furthermore, for the methods that can be automated 
(e.g. phosphorylation of acetylation), prior enrichment is necessary [6-
8,15]. 

For basic research, one wonders about considering PPIs as 
possible PTMs. While ubiquitinylation is considered a PTM, it is in 
fact a covalent PPI. Therefore, functional PPIs can also be considered 
PTMs. The challenge in PPI PTMs is to accurately identify them and 
most difficult to validate them. Having these PPIs in mind, one also 
wonders whether conformation of one protein is also a non-covalent 
PTM, which can in fact lead to two different protein configurations. A 
very good example is the existence of identical antibodies with similar 
conformations, but with different configurations (different disulfide 
linkage) [37].

For the biotechnology and pharmaceutical companies, protein 
and/or antibody characterization (with or without conjugation with a 
cytotoxic or cytostatic drug) is the biggest challenge, since the disulfide 
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bridges in these proteins may not be identical in different protein 
batches or the glycosylation may not happen or may even happen at 
different sites. An example of such a surprise was recently published 
by Sokolowska and colleagues [28], where they demonstrated that 
introduction of new glycosylation sites in a protein may in fact change 
its conformation and the location of the glycan group. 

Another challenge lies in the significance of a PTM. What does 
actually a PTM in a protein mean for a 1) protein and 2) a cellular 
process at a particular time point. If for a protein, a PTM mostly means 
change of stability, conformation, function, or a combination of all 
of them, for a cellular process, it is more difficult to define a PTM. In 
the classical example of the phosphorylation at different sites of the 
Protein Kinase A (PKA), described in the Biochemistry textbook [38], 
different degrees of phosphorylation of PKA means different degrees of 
enzymatic activity. However, in the mass spectrometry field (especially 
in phosphoproteomics), many research groups report a fold-ratio in the 
phosphorylation level of the proteins from two different conditions. 
Does this reflect an accurate and perhaps direct relationship between 
the PTM level (in this case phosphorylation) of a protein and its 
function? Can this be applied to structural proteins, as well? If yes, how?

Other challenges that the researchers face when they study protein 
PTMs are the artificial (experimental)-induced PTMs. Methionine, 
cysteine and tryptophan easily oxidize, Serine, threonine, glutamate 
and aspartate easily loose water, arginine, lysine, asparagine and 
glutamime easily deamidate or cyclisize. In addition, other common 
experimentally-induced modifications such as alkylation can modify 
proteins at sites and amino acids previously unknown, and therefore, 
a peptide that contains such a modification will not be identified by a 
mass spectrometer [3-5,16,17,20,26,28].

Perspectives
The human genome has been sequenced. We have about 30,000 

genes that produce, in the best case, about 100,000 protein isoforms. 
With the given number of genes and their protein products, we are not 
that complicated. However, what makes a big, a really big difference is 
the PTMs in proteins, whose number easily increases the number of 
proteins to several million isoforms, which are far from being identified 
and structurally and functionally characterized. 
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