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Introduction 
Asthma, chronic obstructive pulmonary disease (COPD) and 

cystic fibrosis (CF) are all pulmonary diseases that are characterized 
by chronic inflammation and an increase in mucus production [1-3]. 
In CF, mutations in the CF transmembrane conductance regulator 
(CFTR) gene result in abnormal chloride secretion. This leads to 
dehydrated mucus and a failure of mucus clearance, making the airways 
prone to bacterial infections, chronic inflammation and chronic 
neutrophilia which result in pulmonary destruction and morbidity 
[4,5]. COPD and asthma have different underlying pathophysiology, 
with COPD representing an exaggerated inflammatory response to 
a chronic inhaled toxicant, usually tobacco smoke, and with asthma 
representing a genetic disposition to abnormal inflammatory responses 
to environmental stimuli such as dust mite allergens [6]. However, both 
the chronic bronchitis forms of COPD and asthma both present with 
mucus obstruction of the airways which can be fatal [7-10]. Excess 
mucus in the airways correlates well with disease pathophysiology such 
as a decline in lung function and prolonged bacterial infections [11-
13]. At present there is no cure for any of these diseases. However, a 
number of treatment options such as inhaled antibiotics and mucolytic 
drugs are available to ease some of the respiratory symptoms. For 
the treatment of CF, oral CFTR correctors/potentiators that seek to 
pharmacologically correct common disease-causing CFTR mutations 
are being developed [14,15]. Asthma is typically managed with inhaled 
corticosteroids and β2 agonists [16]. Numerous potential therapies are 
also currently under development for COPD. In this mini-review, we 
discuss the delivery routes that are available for dosing the lungs, and 
the challenges encountered. 

Systemic vs. Inhaled Delivery
Drugs to treat chronic respiratory diseases such as asthma, CF and 

chronic bronchitis have been available for many years and include both 
inhaled and orally administered compounds. When treating pulmonary 
diseases, there are several advantages of using inhaled drug delivery 
over systemic drug delivery; with inhalation, there is a rapid clinical 
response, systemic side effects are often minimized and inhaled drugs 
bypass barriers to therapeutic efficacy such as poor gastrointestinal 
absorption and first-pass metabolism in the liver [17]. Examples include 
inhaled antibiotics, corticosteroids, β2 agonists and mucolytics. Inhaled 

corticosteroids and beta agonists are the primary treatment for mild to 
moderate asthma as they can control asthma symptoms, improve lung 
function, and decrease the risk for exacerbations immediately as they 
reach the lungs quickly [18,19]. A downside to inhalation therapy is 
that the amount of drug delivered is limited by the efficiency of the 
device. Nebulizers deliver more drug than hand held inhalers but are 
time-consuming to the point that patient adherence can be risked. As 
a case in point, CF patients spend more than 1h/day using a nebulizer, 
which has been suggested, is the limit of patient compliance [20,21].

In contrast, systemic drug delivery can be slower, there may be 
more off-target effects since the drug has better access to other organs, 
and a greater chance of the drug being metabolized/excreted before it 
can work on the lungs. Oral delivery is useful for patients with severe 
disease and the elderly who, due to technical difficulties, cannot 
properly use inhalers or nebulizers reliably and therefore may not 
receive the effective dose. Also, drugs with slow pharmacokinetics allow 
for sustained and higher drug concentrations in the lung. For example, 
intravenous antibiotics are used to treat severe lung infections [22]. 
Oral steroids such as prednisone are often prescribed for severe asthma 
attacks and serve to dampen down lung inflammation. However, their 
systemic delivery can have numerous side effects including glaucoma, 
fluid retention, increased blood pressure and mood swings [23-25].

Roflumilast is a type 4 phosphodiesterase inhibitor that is 
administered orally for the treatment of severe COPD. It is an anti-
inflammatory agent designed to target both the systemic and pulmonary 
inflammation associated with COPD and has been shown to improve 
lung function [26]. Since roflumilast is introduced orally, even though 
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Abstract
Asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF) are all pulmonary diseases 

which are characterized by chronic inflammation and an increase in mucus production. Excess mucus in the 
airways correlates with pathophysiology such as a decline in lung function and prolonged bacterial infections. New 
drugs to treat these chronic respiratory diseases are currently being developed and include both inhaled and orally 
administered compounds. Whilst oral drugs may be easier to administer, they are more prone to side-effects due to 
higher bioavailability. Inhaled compounds may show reduced bioavailability, but face their own unique challenges. 
For example, thick mucus in the respiratory tracts of asthma, CF and COPD patients can act as a physical barrier that 
impedes drug delivery. Mucus also contains a high number of enzymes and proteases that may degrade compounds 
before they reach their site of action. Furthermore, some classes of drugs are rapidly absorbed across the respiratory 
epithelia into systemic circulation, which may limit their duration of action and/or cause off-target effects. This review 
discusses some of the different treatment options that are currently available and the considerations that need to be 
taken into account to produce new therapies for the treatment of chronic respiratory diseases.
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the site of action are the pulmonary epithelia, which are accessible by 
inhalation, it has been reported to cause mild to moderate diarrhea 
in 10% of the population, presumably due to elevated cAMP levels 
in the gastrointestinal tract [27-29]. Decreased weight, psychiatric 
disorders, nausea, headache, dizziness and decreased appetite have all 
been reported during clinical trials in 0.4 – 5.2% of the population [29]. 
However, absorption of roflumilast after oral administration is rapid 
and after a single dose the bioavailability is ~80% [30]. Roflumilast is 
not affected by food and metabolism occurs via the liver (54). Since 
COPD predominantly affects the elderly, oral roflumilast may be 
the preferred route for severe COPD sufferers and may afford for a 
sustained therapeutically useful dose of roflumilast in the lungs. 

Mucus as a Barrier to Inhaled Drugs 
Airway surface liquid lines normal airways and acts as a lubricant for 

efficient mucus clearance [4,31]. The mucus component is normally thin 
(typically ~7 microns), ~2% solids and easily cleared by ciliary beating 
or cough clearance. In CF and chronic bronchitis lungs, the mucus 
layer is dehydrated due to abnormal ion transport (values as high as 
~20% and ~8% solids have been reported in CF and chronic bronchitis 
respectively [32,33]. In CF, the mucus layer also contains high levels 
of DNA and actin polymers, the debris of an aggressive neutrophilic 
inflammatory response to infection [34,35]. Thus, while thickened 
mucus attempts to protect the body by trapping inhaled pathogens/
particles, it also becomes a limiting factor for inhaled aerosol-based 
therapies and can act as a physical barrier that impedes drug delivery. 
Characteristics of aerosols that affect their ability to penetrate mucus 
include size, particle charge and solubility. The mucus barrier can limit 
the permeability of hydrophobic drugs [36]. Dawson et al. [37] have 
shown that neutrally charged polystyrene particles less than 200 nm in 
diameter can travel faster than charged particles through CF sputum. 
Indeed, in our own studies of airway surface liquid metabolism, we 
sometimes use fluorescent microspheres to label the mucus layer, and 
have found that negatively charged 100 nm beads “stick” to the mucus 
allowing us to image and track it [38]. Suk et al. [39], have estimated 
that the pore size of CF sputum is ~140 ± 50 nm (range: 60-300 nm). 
Thus, drug particles up to 200 nm can travel through this mucus when 
coated with low molecular weight polyethylene glycol (PEG) [39]. In 
another study, transport of these nanoparticles was examined in CF 
sputum that was treated with N-acetylcysteine, which increased the 
average spacing within the sputum from ~140 ± 50 nm to ~230 ± 50 nm 
[40]. These studies show that promising advances being made towards 
overcoming the hurdles to mucopenetration during pulmonary drug 
delivery. However, when formulating a drug against diseases of mucus 
dehydration for inhalation, particle size and charge remain major 
factors to consider.

Metabolism of Drugs in the Lung Lumen
During a proteomic analysis of airway surface liquid, Candiano 

et al. [41] found that out of 175 proteins detected, enzymes and 
immune-related proteins accounted for ~65 % of all proteins. Thus, 
before any therapeutic effect can even take place, drugs may also be 
metabolized by ectoenzymes found either in the plasma membrane of 
pulmonary epithelia or in airway secretions. Ectoenzymes can either be 
transmembrane proteins, membrane anchored or secreted but all are 
active in the lung lumen. Examples of ectoenzymes include serine and 
acid proteases (e.g. prostasin and cathepsin B) and nucleotidases such 
as the 5’-nucleotidase (CD73) [42]. Given the high amount of enzymes 
present, it can be suggested that a number of these may metabolize 
respiratory drugs before they can have their desired effect, with peptide- 
and nucleotide-based drugs being especially vulnerable to metabolism. 

Furthermore, additional proteases are released into the lung during 
chronic inflammation/infection (e.g. neutrophil elastase), suggesting 
that drug stability must be assayed under conditions that closely mimic 
the diseased state. Bacterial pathogens such as P. aeruginosa, one of 
the predominant pathogens involved in CF lung infections, release 
additional proteases such as alkaline protease contributing to the 
increase in lung lumen proteases in CF airways [43]. 

Secretory leukocyte peptidase inhibitor (SLPI) is an endogenous, 
secreted serine protease inhibitor. It protects the lungs from excessive 
tissue damage caused by leukocyte proteases released during 
inflammation and may also possess anti-inflammatory effects. 
However, its clinical action has been limited due to enzymatic cleavage 
by cathepsins within the lung [44]. Gibbons et al. [45] demonstrated 
that liposome encapsulation of rSLPI can improve stability and 
potentially reduce the level and frequency of dosing required. Thus, 
when designing new inhaled therapies enzymatic degradation in the 
lung lumen should be taken into account.

Rapid Absorption of Xenobiotics across Lung 
Although inhaled drugs can exert beneficial pharmacological effects 

on the lungs and have been used effectively for numerous years, in some 
cases systemic absorption may occur following inhalation, which can 
have unwanted side effects. Drug absorption across the lung into the 
bloodstream is regulated by a thin alveolar–vascular permeable barrier 
[17]. The ideal inhaled drug should be retained in the lung whilst 
the desired pharmacological action occurs, without being absorbed 
into systemic circulation. Due to the unique nature of the lungs, the 
alveolar surface is very thin and the lungs are highly vascularized. 
Thus, the lungs provide a large surface area for absorption of drugs into 
systemic circulation. Some lipophilic compounds may directly diffuse 
down their concentration gradient into the circulation. For example, 
the lung is a highly efficient route for passive nicotine absorption [46]. 
Interestingly, the lungs have evolved several mechanisms to remove 
xenobiotics including organic anion transporters (e.g. OAT1, SLC22A6) 
[47] organic cation transporters (e.g. OCT1; SLC22A4) [48] and 
p-glycoprotein (MDR1) [49]. As such, xenobiotics that are recognized 
by these transporters are taken up into systemic circulation so that they 
can be metabolized by the liver and excreted via the kidneys.

In the absence of CFTR, Na+ absorption through the epithelial Na+ 
channel (ENaC) is enhanced in CF airways, which further contributes 
to mucus dehydration by depleting the airways of salt and water [50]. 
ENaC antagonism with inhaled amiloride was proposed as a remedy for 
mucus dehydration in CF airways. Amiloride blocks ENaC with sub-
micromolar potency, but was originally designed as an orally-delivered 
diuretic. However, amiloride failed to have any impact on CF lung 
disease [51,52]. The reason for this is that amiloride has an extremely 
short half-life in the airways after inhalation. In vitro, when deposited on 
airway surfaces, the half-life was ~9 min [53], since amiloride is rapidly 
absorbed by organic cation transporters [54]. Given that amiloride is a 
diuretic, there is concern over its use as its rapid absorption through the 
respiratory tract may cause an effect on systemic sodium and potassium 
balance via actions on the kidney [55]. Indeed, intranasal installation of 
amiloride to mice caused them to lose ~10% of their body weight/day 
due to urine excretion [56].

Salmeterol is a β2 agonist that is used for the treatment of asthma 
and COPD that is poorly absorbed by the lung. Despite exhibiting robust 
pharmacological effects, including relaxation of smooth muscle, plasma 
concentrations of salmeterol are extremely low or even undetectable 
after inhalation. In contrast, systemic salmeterol would lead to 
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changes in heart rate, QTc interval, and plasma potassium and glucose 
concentrations [57,58]. Long-acting β2 agonists are frequently taken 
with inhaled corticosteroids. However, Horvath et al. have recently 
shown that corticosteroids can affect expression levels of the organic 
cation transporters that are responsible for absorbing β2 agonists, thus 
dramatically affecting their bio-distribution with time [59]. 

Thus, direct drug delivery into the lung has proven to be 
advantageous for the treatment of chronic lung diseases due to the 
lower risk of side effects. However, such drugs must be poorly absorbed 
across the epithelia. More recently, groups are taking advantage of rapid 
pulmonary drug absorption and are investigating how to treat systemic 
diseases through pulmonary drug delivery since this allows for drug 
delivery that bypasses the stomach [60].

Conclusions
When treating pulmonary diseases such as asthma, COPD and CF, 

inhalation may be the best route of administration due to the rapid 
clinical response and the high doses of drug that can be administered 
to the disease site with limited off-target effects. However, a number 
of considerations need to be taken into account when designing new 
inhaled therapies. Particle size, particle charge and solubility and 
physical characteristics of particles need to be considered as well as the 
ability of these particles to withstand the defense barriers presented 
by the lung itself. An ideal drug should also have a long half-life and 
minimal to no absorption across the pulmonary epithelium. Inhaled 
compounds must also be able to withstand degradation by ectoenzymes 
within the lung. A final consideration is their ability to penetrate 
the thick mucus often associated with respiratory diseases. Inhaled 
therapies may need to be administered alongside mucolytic drugs to aid 
penetration through mucus. Getting all of these factors to successfully 
align can lead to successful drug deposition within the lung followed by 
drug elimination without any systemic side effects. 
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